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Abstract. We present a theoretical study of superconductivity of polarons in the Hubbard-Holstein model.
A residual kinematic interaction proportional to the square of the polaron hopping energy between polarons
and phonons provides a pairing field for the polarons. We find that superconducting instability in the d-wave
channel is possible with small transition temperatures which is maximum in the large to small polaron
cross-over region. An s-wave instability is found to be not possible when the effective on-site interaction
between polarons is repulsive.

PACS. 63.20.Kr Phonon-electron and phonon-phonon interactions – 74.20.Mn Polarons and bipolarons –
74.20.Fg BCS theoy and its development

1 Introduction

Polaronic superconductivity has been a subject of interest
following discovery of superconductivity in cuprate oxides
and some molecular conductors [1]. A characteristic fea-
ture of these materials is that the conduction electrons
live in a narrow energy band. It is also recognized that
electron-phonon (e-ph) interaction is considerable in these
materials. The simplest model for narrow band electrons
interacting with local phonons is the Hubbard-Holstein
model [2,3]. If the e-ph interaction is large enough, it can
lead to the formation of polarons. Building on an ear-
lier work [4], Takada and Hotta recently studied [5] this
model in the strong e-ph coupling limit where the polarons
are small polarons. For intermediate e-ph coupling, how-
ever, the polarons may not be small polarons depending
on e-ph coupling strength and the ratio of the values of
the electronic hopping to the phonon energy. In this pa-
per we present a study of superconductivity in this range
to check the role of large-to-small polaron crossover on
superconductivity.

2 Mean-field theory of superconductivity
in the Hubbard-Holstein model

The Hubbard-Holstein (HH) model [2,3] is:

H = −t
∑

iδσ

c†iσci+δσ + U
∑

i

ni↑ni↓

+
∑

i

b†ibi + g
∑

iσ

niσ(b†i + bi). (1)
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Here t (> 0) is the hopping energy between molecules at
lattice site i and its nearest-neighbor lattice sites i + δ,
ciσ (c†iσ) is the annihilation (creation) operator for the
electron with spin σ at a lattice site i and niσ is the
corresponding number operator, U is on-site Coulomb re-
pulsion, bi (b†i ) is the phonon annihilation (creation) op-
erator, and g is the e-ph interaction strength. All ener-
gies are measured in terms of the phonon energy (�ω). In
the calculations given below, first we apply a Modified-
Lang-Firsov (MLF) transformation [6] (which is the origi-
nal LF [7] transformation modified to include lattice defor-
mations on the sites nearest neighbor to the site where an
electron resides) to H to convert it to the polaron repre-
sentation, then we eliminate the residual polaron-phonon
(pol-ph) interactions to obtain an effective interaction be-
tween polarons, and finally we do a mean-field theory of
superconductivity specializing to the cases of s and d wave
order parameters in the case of a square lattice. Our main
result is contained in Figure 2, where it is shown that
the superconducting transition temperature in the d-wave
channel goes through its maximum in the large to small
polaron cross-over region (see Fig. 1). The details of our
calculations are given in the rest of this section and the
conclusions are given in Section 3.

The application of MLF transformation to H leads to
HMLF = eRHe−R, where R is given by,

R = λ0

∑

iσ

niσ(b†i − bi) + λ1

∑

iδσ

niσ(b†i+δ − bi+δ) , (2)

λ0 and λ1 represent the lattice deformations at the elec-
tron site and its nearest-neighbor sites, respectively. They
are treated as variational parameters to be determined
by minimization (with respect to λ0 and λ1) of ground
state energy of the transformed Hamiltonian. Using the
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Fig. 1. The variational parameters λ0 and λ1 for n = 0.81
and t: 0.35 (thick lines) and 0.30 (thin lines).
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Fig. 2. T d

c vs. g for n = 0.81 and t: 0.35 (thick line) and
0.30 (thin line).

above R, we obtain:

eRciσe−R = ciσ exp

[
−λ0(b

†
i − bi) − λ1

∑

δ

(b†i+δ − bi+δ)

]

(3)
and,

eRbie
−R = bi − λ0

∑

σ

niσ − λ1

∑

δσ

ni+δ,σ . (4)

The transformed Hamiltonian (HMLF ) is obtained as:

HMLF = H0 + H1 + H2 , (5)

where,

H0 =
∑

i

b†ibi − εp

∑

iσ

niσ + Ueff

∑

i

ni↑ni↓

−V1

∑

iδ

∑

σσ′
niσni+δ,σ′

+V2

∑

iδδ′,δ �=δ′

∑

σσ′
ni+δ,σni+δ′,σ′ , (6)

H1 = −t
∑

iδσ

c†iσci+δ,σ exp(Xi − Xi+δ) , (7)

and

H2 = (g − λ0)
∑

iσ

niσ(b†i + bi)

− λ1

∑

iδσ

niσ(b†i+δ + bi+δ) . (8)

Here,

εp = λ0(2g − λ0) − zλ2
1 , (9)

Ueff = U − 2εp , (10)

V1 = 2(g − λ0)λ1 , V2 = λ2
1 , (11)

Xi = λ0(b
†
i − bi) + λ1

∑

δ

(b†i+δ − bi+δ) , (12)

and z is the coordination number of a lattice site. Equa-
tion (5) is the Hamiltonian of polarons. The polaron is
much more massive than the original electron since it is a
composite particle consisting of an electron and the associ-
ated lattice deformations. These polarons interact among
themselves (through the interactions Ueff , V1 and V2), and
interact with the phonons through off-diagonal phonon
terms of H1 and H2. The phonons remain unaffected by
the MLF transformation. Notice also that the pol-ph cou-
plings are much weaker than the original e-ph coupling (g).

Now we work using the variational phonon basis ob-
tained through the MLF transformation. The variational
parameters λ0 and λ1 are found out from a minimization
of the ground-state energy in the normal state with zero
phonon averaging. The values of λ0 and λ1 depend on t/ω
and g/ω for a particular lattice and not on U . With this
variational basis we proceed with our second order pertur-
bation calculation by expanding the exponentials in H1 to
obtain, up to O(λ0 − λ1), H̃ valid for (λ0 − λ1) < 1 as:

H̃ = H0 − tp
∑

iδσ

c†iσci+δ,σ + H2 + H3, (13)

where,

H3 = −tp
∑

iδσ

c†iσci+δ,σ [(λ◦ − λ1)(b
†
i − bi − b†i+δ + bi+δ)

+ λ1

∑

δ′ �=δ

(b†i+δ′ − bi+δ′)

− λ1

∑

δ′ �=−δ

(b†i+δ+δ′ − bi+δ+δ′)] (14)

and,
tp = t exp

[−(λ0 − λ1)2 − (z − 1)λ2
1

]
. (15)

In the above equation H2 and H3 describe the pol-ph inter-
actions. On eliminating the pol-ph interaction terms and
considering second order processes only, we obtain (for
ztp < 1),

˜̃
H = H0 − tp

∑

iδσ

c†iσci+δ,σ + H4, (16)



R. Ramakumar and A.N. Das: Polaron cross-overs and d-wave superconductivity in Hubbard-Holstein model 199

where,

H4 = −2(g − λ0)2
∑

i

ni↑ni↓

+ 2λ1(g − λ0)
∑

iδ

∑

σσ′
niσni+δ,σ′

− λ2
1

∑

iδδ′

∑

σσ′
ni+δ,σni+δ′,σ′

− t2p(λ◦ − λ1)2
∑

iδδ′

∑

σσ′
[c†i−δ′,σ′c

†
iσci+δ,σci,σ′

+ c†i,σ′c
†
i−δ,σci,σci+δ′,σ′ − c†i−δ′,σ′c

†
i−δ,σciσciσ′

− c†iσ′c
†
iσci+δ,σci+δ′,σ′ ]. (17)

It may be noted that our study is restricted to the region
where tp(λ0 − λ1), (g − λ0), and λ1 are much less than 1
even though g > 1. This justifies our perturbation cal-
culation. On simplification, confining to nearest neighbor
singlet pairing terms, and neglecting terms O(λ2

1) since λ1

is quite small (see Fig. 2), we get:

˜̃
H = −tp

∑

iδσ

c†iσci+δ,σ − εp

∑

iσ

niσ + Ũ
∑

i

ni↑ni↓

− t2p(λ
2
0 − 2λ0λ1)

∑

iδ

∑

σσ′
[c†i+δ,σ′c

†
i,σci+δ,σciσ′

+ c†i+δ,σ′c
†
iσci+δ,σciσ′ − c†i+δ,σ′c

†
i+δ,σciσciσ′

− c†iσ′c
†
iσci+δ,σci+δ,σ′ ], (18)

where Ũ = (U − 2g2). The elimination of the pol-ph terms
generates a pairing field whose magnitude is O(t2p) which
is rather small. Note that the field associated with the on-
site pair-hopping processes (the last two terms in ˜̃

H) is
repulsive. The origin of superconductivity in this model,
when Ũ > 0, then is the field generated through a virtual
emission and absorption of phonons while the polarons
hop from site to site. The two-polaron process involved is
one polaron hops to its nearest neighbor site and excites
a phonon at the target site and another polaron on the
target site absorbs the excited phonon and hops to the site
left by the first polaron. These processes lead to the fourth
and fifth terms in the RHS of equation (18). If the e-ph
interaction is not sufficient enough to lead to the formation
of polarons, superconductivity occurs in the usual way
through the phonon exchange between electrons, and the
pairing field contains the full e-ph interaction. Now we are
at a stage where we can do a mean-field theory of the

superconductivity using ˜̃
H .

On mean-field factorization of ˜̃
H , we obtain:

HMF = −tp
∑

iδσ

c†iσci+δ,σ −
(
εp − Ũ

n

2

)∑

iσ

niσ − NŨ
n2

4

+ ˜̃
U

∑

i

(A0ci↓ci↑ + h.c.) − N
˜̃
U |A0|2

+ Vtp

∑

iδ

(∆δci+δ↓ci↑ + h.c.) − NzVtp|∆δ|2 ,

(19)

where,

A0 = 〈c†i↑c†i↓〉 , (20)

∆δ = 〈c†i+δ↑c
†
i↓〉 , (21)

˜̃
U = Ũ − zVtp , (22)

and
Vtp = −4t2p(λ

2
0 − 2λ0λ1) . (23)

The above mean-field approximation is valid for Ũ less
than the polaron band-width. For larger Ũ strong corre-
lation effects like Hubbard sub-band formation can occur.
For recent studies of strong correlation effects originat-
ing from large U in Hubbard-Holstein model see refer-
ences [8,9]. Converting to momentum space, we get:

HMF = −tp
∑

kσ

ξ(k)c†kσckσ −
(

εp − Ũn

2

)
∑

kσ

nkσ

+
∑

k

[(
˜̃
UA0 + VtpA1(k)

)
c−k↓ck↑ + h.c.

]

− N
˜̃
U |A0|2 − NzVtp|∆δ|2 , (24)

where
ξ(k) =

∑

δ

eik.δ, (25)

A1(k) =
∑

δ

∆δe
ik.δ , (26)

and N is the number of lattice sites. In the s-wave case,
Ũ term should be considered even if Ũ > 0 since the ex-
tended s-wave order parameter has an on-site component,
and this is suppressed by the on-site repulsion Ũ . The
Ũ term does not affect d-wave pairing. In studying super-
conductivity, we will be considering only Ũ > 0 case since
Ũ < 0 case leads to an effective attractive Hubbard model
situation and this model is well understood [10–12]. Now
we will consider s and d wave pairing channels separately.

2.1 s-wave channel

In the s-wave case, the effective Hamiltonian is

Hs =
∑

kσ

ε̃(k)c†kσckσ +
∑

k

(Ds(k)c−k↓ck↑ + h.c.) + s0 ,

(27)

where, ε̃(k) = −tpξ(k) − µ̃, Ds(k) = ˜̃
UA◦ + VtpA

s
1(k),

As
1(k) = 2∆δγs(k), µ̃ = µ+εp−Ũn/2, γs(k) = cos(kxa)+

cos(kya) for a square lattice of lattice constant a, and

s0 = −(NŨn2/4) − n
˜̃
U |A0|2 − NzVtp|∆δ|2. In the above

we have introduced a chemical potential (µ) to fix the
number density, and As

1(k) is for the isotropic case. The
integral equation which determines Ds(k) is obtained, us-
ing Green’s functions, to be,

Ds(k) = − 1
N

∑

k′
Vs(kk′)

Ds(k′)
2Es(k′)

tanh
[
βEs(k′)

2

]
, (28)
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where the pairing field Vs(kk′) is

Vs(kk′) = ˜̃
U + 4z−1Vtpγs(k)γs(k′), (29)

β = 1/kBT , kB is the Boltzmann constant, and the quasi-
particle energy Es(k) =

√
ε̃2(k) + |Ds(k)|2. Now, we have

already mentioned that we will consider the non-trivial
case of Ũ > 0. In that case s-wave pairing is not possible
since Vs(kk′) is not attractive.

2.2 d-wave channel

In this case, we have

Hd =
∑

kσ

ε̃(k)c†kσckσ +
∑

k

(Dd(k)c−k↓ck↑ + h.c.) + d0 ,

(30)
where Dd(k) = VtpA1(k), and d0 = −(NUn2/4) −
NzVtp|∆δ|2. Then the d-wave gap equation is obtained as

Dd(k) = − 1
N

∑

k′
Vd(kk′)

Dd(k′)
2Ed(k′)

tanh
[
βEd(k′)

2

]
,

(31)
where,

Vd(kk′) = 4z−1Vtpγd(k)γd(k′) , (32)

E2
d(k) = ε̃2(k)+|Dd(k)|2, and γd(k) = cos(kxa)−cos(kya)

for a 2D-square-lattice case. The superconducting transi-
tion temperature T d

c is obtained from,

1 = − 1
N

∑

k′
Vtp

γ2
d(k′)

2ε̃(k′)
tanh

[
βcε̃(k′)

2

]
. (33)

where βc = 1/kBT d
c .

We have numerically analyzed the above equations and
the results are shown in Figures 1–2. The values of t (<
0.5) used are in the anti-adiabatic limit. In Figure 1 we
have displayed the variation of the lattice deformation (λ0

and λ1) as a function of g. A smooth cross-over from a
large to a small polaron [6] with increasing g is seen in
Figure 1.

The variation of Tc with g (for n = 0.81) for super-
conducting instability in the d-wave channel is displayed
in Figure 2. The variation of Tc with n has a bell shaped
form centered at half-filling similar to that found in
reference [5]. Superconducting instability with small T d

c
is possible for intermediate values of e-ph coupling. The
small T d

c is due to small value of the pairing field [which

is O(t2p)]. The T d
c is seen to reach a maximum in the large

to small polaron cross-over region.

3 Conclusions

In this work we presented a study of superconductivity
in the anti-adiabatic limit of the Hubbard-Holstein model
considering the polaron formation. Our purpose was to
study superconductivity of the polarons in the large to
small polaron cross over region. We found that transition
temperature for superconducting instability in the d-wave
channel goes through its maximum in the large to small
polaron cross-over regime. We also found that s-wave pair-
ing is not possible for the case of U > 2g2. In the strong
e-ph coupling limit also, it was found [5] that T d

c is ex-
tremely small when U > 2g2. In real materials there is
inter-site Coulomb repulsion and this will drastically re-
duce [13] the T d

c . So, we conclude that, when the mech-
anism considered here operates, T d

c is very small both in
the intermediate and strong coupling limits of the e-ph
interaction.
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